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Abstract

Selection of most informative features that leads to a small loss on future data is arguably one of the most important
steps in classification, data analysis and model selection. Several feature selection algorithms are available; however,
due to noise present in any data set, feature selection algorithms are typically accompanied by an appropriate cross
validation scheme. In this work, we propose a statistical hypothesis test derived from the Neyman-Pearson lemma
for determining if a feature is statistically relevant. The proposed approach can be applied as a wrapper to any
feature selection algorithm, regardless of the feature selection criteria used by that algorithm, to determine whether
a feature belongs in the relevant set. Perhaps more importantly, this procedure efficiently determines the number of
relevant features given an initial starting point. We provide freely available software implementations of the proposed
methodology.

1 Introduction
High dimensional data sets are frequently encountered in real-world machine learning problems. In such scenarios,
the feature vectors, x, are represented in a high dimensional space RK , where some or many of the K features may be
irrelevant, carry little or no information about the learning problem while others may be redundant (i.e., carry the same
information as other features in regards to the class labels). In either of these scenarios, using fewer features is likely
to be sufficient for learning. A plethora of algorithms have been proposed, many well-established, for reducing the
number of features to k (k � K) by optimizing an objective function that selects the k “most informative” features,
while minimizing the redundancy of these k features (see [1, 2] for a review of such approaches). While individual
feature selection methods vary from each other, many share the general principle: select k < K features through
(possibly) an iterative process that optimizes a pre-determined objective function.

Feature selection (FS) algorithms typically fall into one of three categories: wrapper–, embedded–, and filter–based
approaches. A FS wrapper is a classifier dependent implementation that selects features minimizing some predictive
scoring objective function for a specific classification model. Embedded methods corporate FS into the construction
of the classification model – still a classifier dependent model for FS. Finally, filters are independent of the classifier,
and select features based on an objective function that is independent of classification loss, such as mutual information
or χ2 statistics.

Selecting the appropriate subset size k is one of the key considerations in feature subset selection. Heuristics
may lead to severely suboptimal results, whereas grid searches are infeasible for large data sets. Also of practical
importance is whether a post-hoc test can be used to determine the accuracy, or the optimality, of initial selection
of k, and taking the appropriate action when warranted. There are existing hypothesis-testing approaches for FS;
however, the implementations of these approaches are usually not flexible with respect to other objective functions.
For example, the χ2 test may be used to measure a lack of independence between data variables X and label variables
Y ; however, the χ2 based FS does not allow the inspection of objective functions such as mutual information.

In this brief correspondence, we present a Neyman-Pearson hypothesis test for the identification of relevant fea-
tures. Our approach is derived from a given base FS algorithm that selects k features across several bootstrap data sets.
Given the results obtained by running the FS algorithm on n bootstrap data sets, we derive a hypothesis test to infer
the number of relevant features k∗, which may in fact be different than the k that was used by the base FS algorithm.

This article is organized as follows: section 2 presents related work. Section 3 presents the proposed approach.
Section 4 presents the results on several synthetic and UCI benchmark data sets. Finally, section 5 includes a discussion
and concluding remarks.
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2 Related Work
FS is a well-researched area that seeks to find an optimal feature subset, cleared from irrelevant and redundant features.
Such a feature subset not only improves classification accuracy, but also reduces the computational complexity of the
model. Guyon & Elisseeff’s tutorial on variable selection covers several FS and subsequent validation methods [1].
Validation is important in evaluating a FS approach, as it allows us to determine the robustness of the approach to
variations in its free parameter(s). Selecting and inferring values of such free parameters, such as the number of
features a method selects as relevant, is the focus of this brief communication. Brown et al. recently presented an
information-theoretic FS framework for maximizing of the conditional likelihood function [3], where they examine
the consistency to measure the stability of FS methods. However, in their approach k was selected heuristically, and
was not optimized for any of their experiments, an issue that is addressed in this communication.

Yang et al. developed a hypothesis test based FS method to find textual abundance features that contribute to the
“spam” class for email prediction [4]. Their work presented a methodology that used a Binomial hypothesis test (Bi-
test) that was designed to identify features that were highly probable to be in a spam email. However, the approach,
while effective, assumes the features of the data are of a particular form, or distribution. Other approaches, such as
Relief and Focus, can be used to determine feature relevance [5, 6]; however, these approaches do not allow for the
selection of the objective function being optimized.

Some FS methods have the capability to “dynamically” select the number of features based on the χ2 statistic [7],
which measures the lack of independence between random variables X and Y . However, using the χ2 statistic fixes
the objective function for the FS method. Developing a general and versatile framework that allows free choice of the
objective function while providing inference on parameter selection appears to be an under explored area.

Kuncheva presents a consistency index for determining the level of stability of a FS algorithm when tested with
multiple validation data sets [8]. Kuncheva’s consistency index was designed to meet three primary criteria: the
consistency index (a) is a monotonically increasing function of the number of features common to two feature sets, (b)
is bounded, and (c) has a constant value for independently drawn subsets of features of the same cardinality.

Definition 2.1 (Consistency [8]) The consistency index for two subsets A ⊂ X and B ⊂ X , such that r = |A ∩ B|
and |A| = |B| = k, where 1 ≤ k ≤ |X | = K, is

IC(A,B) =
rK − k2

k(K − k)

3 Neyman-Pearson Hypothesis Testing for Feature Selection
Different FS algorithms optimize different objective functions, hence, making different assumptions about the disper-
sion or distribution of the data. Unfortunately, few methods can offer the dynamic selection of k, and fewer yet have
the ability to work with other FS objective functions (e.g., they already have a specified filter criteria: see FS with the
χ2 statistic [7]).

In this section, we present an algorithm-independent meta–approach to determine an appropriate level of k using
the Neyman-Pearson feature selection (NPFS) hypothesis test. This approach can be used with any FS algorithm.
Table 1 contains the mathematical notations used throughout this manuscript.

3.1 Overview of the Proposed Method & Preliminaries
A FS algorithm, F , is run n-times with bootstrap data sets sampled uniformly from D. In this setting, data instances
– and not the features – that are sampled randomly. For each bootstrap data set, F selects k of the K features in the
“relevant feature set”. For the moment, we assume there is a k∗, the optimal number of relevant features. Ideally,
the same k features would be found by F as relevant over each of the n trials; however, this is rarely the case due to
initializations and randomness in the bootstrap sample. A consistency index can be used to measure the stability of
the relevant feature sets over these n trials. This index, however, is not based on a statistical hypothesis test, nor is it
designed to determine if a feature is consistently selected as relevant. In fact, by Kuncheva’s formulation, IC(A,B) is
a random variable (this is easy to see since R = r is a random variable with a hypergeometric distribution).
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Table 1: Mathematical Notations

Notation Meaning
X full set of features, |X | = K
F feature selection algorithm
Xl Bernoulli random variable indicating if

a feature was selected as relevant on the lth
bootstrap trial

Z Binomial random variable
H0 null hypothesis
H1 alternative hypothesis
ζcrit Neyman-Pearson (critical) threshold
k number of features selected by F
n number of bootstraps

T (Z) sufficient statistic of random variable Z

3.2 Algorithm Derivation & Implementation
Let us first consider a hypothesis test being applied to a single feature (the proposed test can be applied to each feature
individually). At each bootstrap iteration, F , returns a set of indices for the relevant feature set. For each feature in
the set X , we mark whether the feature was in the relevant set (Xl = 1) or not in the set (Xl = 0), where l ∈ [n] is the
bootstrap iteration.

In this situation, we can determine that the random variable Xl is distributed as a Bernoulli random variable with
probability p (that is yet to be determined). The n Bernoulli random variables from the n bootstrap data sets form a
Binomial distribution with Zn = X1 + . . .+Xn successes (Zn = z be an observation of the random variable Zn). If a
feature is selected by chance, then the probability for such a feature appearing in the relevant feature set is p0 = k/K.
Now, there is the observed probability of a feature appearing in the relevant feature set from the bootstrap trials, which
is p1 = z/n. If all features were equally relevant (or equally irrelevant), we would expect these probabilities to be
equal to one another. Ultimately, we would like to know if p1 > p0, or in other words, if the probability of a feature
being in the relevant set is greater than the probability of a feature being selected by random chance. Against this
background we have a hypothesis test formulated as follows,

H0 : p0 = p1

H1 : p1 > p0

where H0 is the null hypothesis (that all features are equally relevant), and H1 is the alternative hypothesis (that some
features are more relevant than others). We select the Neyman-Pearson test for several reasons: (a) the likelihood
functions under H0 and H1 can be explicitly computed as shown below, (b) the solution with the Neyman-Pearson
lemma is a simple yet elegant result, and (c) perhaps most importantly, the Neyman-Pearson test is the most powerful
test available for size α [9]. The Neyman-Pearson lemma states that we reject the null hypothesis if,

Λ(z) =
P(z|H1)

P(z|H0)
> ζcrit (1)

where P(z|H0) is the probability distribution under the null hypothesis, P(z|H1) is the probability distribution under
the alternative hypothesis, and ζcrit is a threshold such that,

P(T (z) > ζcrit|H0) = α (2)

where α is size of the test, and T (z) is the test-statistic. Using log Λ(z) would provide equivalent results since taking
the logarithm does not affect the solution. Recall that the random variable Z follows a Binomial distribution. Using
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equation (1) and the form of the probability distribution on Z, we apply the Neyman–Pearson lemma:

P(Zn = z|H1)

P(Zn = z|H0)
=

(
n
z

)
pz1(1− p1)n−z(

n
z

)
pz0(1− p0)n−z

=

(
1− p1
1− p0

)n
·
(
p1(1− p0)

p0(1− p1)

)z
> ζcrit

Since
(

1−p1
1−p0

)n
is simply a constant, which can be moved to the other side of the inequality, resulting in a new

threshold ζ ′crit. Thus, (
p1(1− p0)

p0(1− p1)

)z
> ζ ′crit

Taking the logarithm gives us

z log

{
p1(1− p0)

p0(1− p1)

}
> ζ ′′crit

where, again, the logarithm term is simply a constant and it can be removed to find a scaled threshold ζ ′′′crit. Thus, we
are seeking

z > ζ ′′′crit

where ζcrit is a critical threshold determined by P(z > ζ ′′′crit|H0) = α (note by definition that z is a sufficient statistic
for T (z)). Since the probability distribution on the null hypothesis is known (i.e., Binomial), we may explicitly solve
for ζ ′′′crit.

P(z > ζ ′′′crit|H0) = 1− P(z ≤ ζ ′′′crit|H0)︸ ︷︷ ︸
cumulative distribution function

= α (3)

Since P(z ≤ ζ ′′′crit|H0) has a closed form expression it can be obtained from a lookup table. Note that α can be used to
control how conservative the hypothesis test will be. That is, if α is small, it will become more difficult for a feature
to be detected as relevant because ζ ′′′crit will become large. To summarize, NPFS is implemented as follows:

1. Run a FS algorithm F on n independently sampled data sets (sampling instances, not features). The indepen-
dently sampled data sets can be a result of cross-validation or bootstrap samples. Form a matrix X ∈ {0, 1}K×n
where {X}il is the Bernoulli random variable for feature i on trial l.

2. Compute ζ ′′′crit using equation (3), which requires n, p0, and the Binomial inverse cumulative distribution func-
tion.

3. Let {z}i =
∑n
l=1 {X}il. If {z}i > ζ ′′′crit then feature belongs in the relevant set, otherwise the feature is deemed

non-relevant. Use only the features selected by the Neyman-Pearson detector for learning a classification or
regression function.

3.3 Advantages of the Proposed Approach
The proposed method for post-analysis of FS offers several capabilities. Let us assume that k was selected to be too
large compared to the true number of relevant features, k∗. How can we determine a more accurate value of k? The
proposed approach provides a natural solution: simply use the features that Neyman-Pearson detector returns as being
relevant. Note that the number of features returned by the Neyman-Pearson detector need not be k: if k were too large,
we expect the test to return fewer relevant features. Having such an inference on k can reduce the complexity of the
classifier or the regression function. We can also ask the opposite question: what if k – provided as a user-input to the
FS algorithm – was selected too small? Could we apply this hypothesis test to determine the subset of K features that
are relevant even though F never selects all of them because k was smaller than k∗? Our experiments, described in
Section 4, test these conditions under controlled simulations as well as on data sets obtained from the UCI Machine
Learning Repository.
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3.4 Upper Bound on Parameter Estimation
An important property of the proposed approach is that if X1, . . . , Xn ∼ Bernoulli(p), then we expect the difference
between p and its bootstrap estimate p̂ to become arbitrarily small as n grows large. The probability of the magnitude
of difference between p and p̂ being greater than some ε > 0 can be upper bounded using Hoeffding’s inequality.
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Figure 1: Results of the Neyman-Pearson hypothesis test applied to the synthetic uniform data set for different cardi-
nalities of the relevant feature set. The Neyman-Pearson hypothesis test recovers the original 5 relevant features (first
5 rows of each plot) with only a few additional irrelevant features in the set. This is a visualization of X, where black
segments indicate Xl = 0, white segments Xl = 1, and the orange rows are the features detected as relevant by the
Neyman-Pearson test.
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(a) K = 50, k∗ = 15
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(b) K = 100, k∗ = 15
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(c) K = 250, k∗ = 15

Figure 2: Number of features selected by the Neyman-Pearson detector for varying levels of k (too large & too small)
when there are 15 relevant features (k∗) in the synthetic data set. The number of features selected by the proposed
approach appears to be converging to 15 when k is initially selected too small. Even though the number of selected
features diverges when k is selected too big, they undershoot the original guess while the too small k’s overshoot their
original guesses.

Theorem 3.1 (Hoeffding’s Inequality [10]) Let Y1, Y2, . . . , Yn be independent random observations such that E[Y ] =
µ, Ȳ = 1

n

∑
i Yi, and a ≤ Yi ≤ b. For any ε > 0, the following inequality holds,

P(|Ȳ − µ| ≥ ε) ≤ 2e−2nε
2/(b−a)2 (4)

Hoeffding’s inequality is similar to that of Markov’s inequality; however, it produces a tighter bound for larger devi-
ations. We may use Hoeffding’s inequality with a few assumptions to bound the differences between the bootstrap’s
estimate p̂, and the true probability p. If X1, . . . , Xn ∼ Bernoulli(p), then for any ε > 0, we have,

P(|p̂− p| ≥ ε) ≤ 2e−2nε
2

(5)

where p̂ = 1
nZn. Thus if X1, . . . , Xn ∼ Bernoulli(p), then p̂ approaches p exponentially quickly as a function of n.

Chebyshev’s inequality can also be used to find a bound on P(|p̂− p| ≥ ε); however, Hoeffding’s inequality provides
a tighter upper bound for larger values of ε.
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4 Experiments
Our proposed methodology for feature relevance using NPFS was implemented using joint mutual information (JMI)
as the baseline FS objective function. In this section, we seek to determine the behavior of the hypothesis testing
procedure through several experiments on synthetic and real-world data. We wish to answer the following questions:

1. Given a controlled data set, can NPFS correctly identify the truly relevant features?

2. If k were selected too large, can NPFS identify the subset of the k features that should be used instead of the set
of k features?

3. If k were selected too small, can NPFS identify all the relevant features that could not be identified as relevant
due to k being too small?

We provide a Matlab implementation of NPFS under the GNU GPLv31.

4.1 Data Sets and Testing Procedure
The proposed Neyman-Pearson hypothesis testing methodology (NPFS) for any given FS algorithm was tested on a
synthetic data set, and a collection of data obtained from the UCI machine learning repository [11] (see Table 2). The
synthetic data, described below, allows us to tailor experiments to test the strengths and weaknesses of the proposed
approach.

4.1.1 Description of the Uniform Data

M observations are generated with features that are independently and identically distributed (iid) uniform random
variables in the interval [0, 10]. This data set is referred to as Duni. Each feature vector xm for m ∈ [M ] has K
features. The true labeling function, unknown to any algorithm, is given by,

ym =

{
1,

∑k∗

i=1 xm(i) ≤ 5 · k∗
0, otherwise

Hence, only the first k∗ features carry information for determining the label ym of a feature vector xm. Our goal is to
identify, using our hypothesis test, those features (indices i ∈ [k∗]) that are relevant to the classification problem. Note
that the threshold for determining the class label is the statistical expectation of the linear combination of the first k∗

feature variables (this is easily shown using the properties of the expectation of a linear function). Such a threshold
sets the prior probability on each of the classes to approximately 1

2 for a randomly sampled data set.
There are n bootstrap data sets drawn from Duni, and the JMI feature selection algorithm is run independently

on each sampled bootstrap set. k of K features are selected for each bootstrap data set, and a vector with binary
indicators representing whether or not the feature was selected is produced. The n vectors form a K × n matrix with
binary entries (i.e., X). Each row, corresponding to a feature, is the sequence of Bernoulli experiments of success and
failures used in NPFS.

4.2 Results on Synthetic Data Sets
Let us start with our questions on appropriate selection of k: if k is selected too large, can k∗ be found such that
k∗ < k, and what is approximately the ideal value of k given the results from the n bootstraps? In this experiment, 5
features were considered relevant out of 25 features (recall that the features are uniform random variables). The value
of k was varied from 10 to 24. For these cases, there are (at least) 5 to 19 irrelevant features are incorrectly selected as
relevant at any given bootstrap iteration. We apply the Neyman-Pearson test after 100 bootstraps. Figure 1 shows that
the Neyman-Pearson test can identify when irrelevant features are being selected by JMI. In this figure, the matrix X
is visualized with white entries indicating features selected by JMI at different bootstrap iterations. The orange rows
highlight the features that Neyman-Pearson method identifies as being relevant. Note that features {1, 2, 3, 4, 5} are
the only relevant features for this problem. Clearly, the inference provided by the Neyman-Pearson test allows us the
ability to reduce k to achieve a much smaller subset of relevant features. In each of these experiments, we find that

1http://github.com/EESI/NPFS
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Figure 3: Variation in the Neyman-Pearson’s test for the value of k∗ given that k may have been selected too small.
x-axis represents the data set under test and the y-axis is the predicted k∗ by the proposed approach using 10,000
bootstraps.

there are a few features being detected as relevant, which are actually non-relevant. It is possible to tune n and α such
that in every experiment only features 1 through 5 are being detected as relevant. In every experiment, however, the
proposed method is always recommending the use of fewer features, because many of the features JMI selects at each
bootstrap iteration are irrelevant.

The second key question is: can the value of k∗ be recovered if k was initially chosen too small, and if so, how
many bootstraps are needed? To examine this situation, three more synthetic uniform data sets were generated. All
synthetic data sets’ features are uniform random variables with 15 relevant features; however, the data set have 50,
100, or 250 features. We apply our Neyman-Pearson test with the number of bootstraps varying between 1 and 500.
Furthermore, k ∈ {3, 5, 10, 15, 25} are examined. Figure 2(a) shows that the value k∗ selected by the Neyman-Pearson
algorithm is approaching the true value for various selections of k. We should note that we can improve these results
by increasing the number of observations in the data set. However, if k were too large, there are still a few features left
in the relevant set as determined by the Neyman-Pearson detector (as observed previously in Figure 1). Figure 2(c)
shows the effect of using 250 features rather than 50 features. Again, if k were selected too small, the Neyman-Pearson
detector finds approximately k∗ features; however, the method still unable to completely recover all of them with 500
bootstraps.

4.3 Results on UCI Data Sets
In this section, we present the classification error using a base classifier trained on: (i) all features, (ii) trained on
the top 10 features selected by JMI, and (iii) trained on features selected by the proposed approach. The data sets are
obtained from the UCI machine learning repository [11], and the Peng et al.’s mRMR paper [12]. The naı̈ve Bayes (nb)
and CART algorithms are used as baseline classifiers [13, 14]. We use the following notation to denote the classifier
and the FS algorithm: nb (naı̈ve Bayes trained on all features), nb-npfs (naı̈ve Bayes trained with features identified
by JMI and the proposed NPFS), and nb-jmi (top 10 features selected with JMI). It is important to note that we do
not have access to the (true) k∗ or the degree of feature relevancy for these data sets, therefore, we must examine the
performance of a classifier to evaluate the methods effectiveness.

Table 2 presents each classifier’s error and its rank (see [15]). The proposed approach for both the naı̈ve Bayes
and CART produces the best average rank. Unfortunately, there is not enough statistical evidence to suggest that the
proposed approach provides uniformly the lowest error rate. There is, however, statistical significance between CART-
NPFS and CART-JMI, with CART-NPFS out performing CART-JMI with an α-level of 0.1 using the Wilcoxon’s
signed rank test. The average number of features being selected by the Neyman-Pearson test after 10,000 bootstraps
can be found in Figure 3. The UCI data sets do not allow us to control the level of feature relevancy as we did with
the synthetic data and it is worth noting that we do not observe NPFS detecting all features as relevant even when the
number of bootstraps is quite large.

4.4 Optical Character Recognition
Our final experiment uses the optical character recognition data set collected from UCI Machine Learning Repository.
Each image in the experiment consists of 64 pixels represented by 4-bits (i.e., an 8 × 8 image); however, each image
has been corrupted by adding nosiy pixels. The final image is 16× 16. Just as before, we run 100 bootstrap trials with
the JMI FS algorithm and apply the Neyman-Pearson hypothesis test. In this experiment k = 64 and K = 256. Each
noisy pixel is sampled from a uniform probability mass function taking possible values {1, . . . , 16}.
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Table 2: Classification errors of a Naı̈ve Bayes and CART tested on the UCI data sets (see section 4.3) and rank
after 10-fold cross validation. The errors in the table have been truncated; however, the ranks are determined via the
untruncated values.

data set instances features nb nb-jmi nb-npfs cart cart-jmi cart-npfs
breast 569 30 0.069 (3) 0.055 (1.5) 0.055 (1.5) 0.062 (3) 0.056 (2) 0.041 (1)
congress 435 16 0.097 (3) 0.088 (1) 0.088 (2) 0.051 (3) 0.051 (1.5) 0.051 (1.5)
heart 270 13 0.156 (1) 0.163 (2) 0.174 (3) 0.244 (3) 0.226 (2) 0.207 (1)
ionosphere 351 34 0.117 (3) 0.091 (2) 0.091 (1) 0.077 (3) 0.068 (1) 0.074 (2)
krvskp 3196 36 0.122 (3) 0.108 (1) 0.116 (2) 0.006 (1) 0.056 (3) 0.044 (2)
landsat 6435 36 0.204 (1) 0.231 (2.5) 0.231 (2.5) 0.161 (1) 0.173 (2) 0.174 (3)
lungcancer 32 56 0.617 (3) 0.525 (1) 0.617 (2) 0.542 (2) 0.558 (3) 0.533 (1)
parkinsons 195 22 0.251 (3) 0.170 (1.5) 0.170 (1.5) 0.133 (1.5) 0.138 (3) 0.133 (1.5)
pengcolon 62 2000 0.274 (3) 0.179 (2) 0.164 (1) 0.21 (1) 0.226 (2.5) 0.226 (2.5)
pengleuk 72 7070 0.421 (3) 0.029 (1) 0.043 (2) 0.041 (2) 0.027 (1) 0.055 (3)
penglung 73 325 0.107 (1) 0.368 (3) 0.229 (2) 0.337 (1) 0.530 (3) 0.504 (2)
penglymp 96 4026 0.087 (1) 0.317 (3) 0.140 (2) 0.357 (3) 0.312 (2) 0.311 (1)
pengnci9 60 9712 0.900 (3) 0.600 (2) 0.400 (1) 0.667 (2) 0.617 (1) 0.783 (3)
semeion 1593 256 0.152 (1) 0.456 (3) 0.387 (2) 0.25 (1) 0.443 (3) 0.355 (2)
sonar 208 60 0.294 (3) 0.279 (2) 0.241 (1) 0.259 (2) 0.263 (3) 0.201 (1)
soybean 47 35 0.000 (2) 0.000 (2) 0.000 (2) 0.020 (2) 0.020 (2) 0.020 (2)
spect 267 22 0.210 (2) 0.206 (1) 0.232 (3) 0.187 (1) 0.210 (2) 0.229 (3)
splice 3175 60 0.044 (1) 0.054 (2) 0.055 (3) 0.085 (3) 0.070 (2) 0.066 (1)
waveform 5000 40 0.207 (3) 0.204 (2) 0.202 (1) 0.259 (3) 0.238 (2) 0.228 (1)
wine 178 13 0.039 (2.5) 0.039 (2.5) 0.034 (1) 0.079 (3) 0.068 (1.5) 0.068 (1.5)
average 2.275 1.900 1.825 2.075 2.1250 1.800
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Figure 4: Top row: 16 × 16 image from the OCR data set corrupted with noisy pixels. The actual OCR images are
8 × 8 and take a 4-bit value. Bottom row: Irrelevant features marked by the Neyman-Pearson test are indicated in
black. Note ONLY black pixels are irrelevant feature and not the “actual” value of the pixel (i.e., we have scaled the
pixel to assure there were not black pixels). The Neyman-Pearson test selects a subset of 52 features in the 16 × 16
image that are relevant.

Figure 4 presents the NPFS results on OCR data set. The top row of Figure 4 shows the 16× 16 images corrupted
with noisy pixels. Note that the original OCR images can be observed as they are embedded within the noise. The
bottom row of Figure 4 shows the irrelevant features marked in black by the Neyman-Pearson test. Note that only the
black pixels are irrelevant features and not the “actual” value of the pixel (i.e., we have scaled the pixel to assure there
were not black pixels). The Neyman-Pearson test selects a subset of 52 features in the 16× 16 image that are relevant.
Thus the Neyman-Pearson test is suggesting that there is a subset of features, fewer than 64, that are relevant for the
discrimination between the characters in the image.

5 Conclusion
In this brief communication, we presented a wrapper methodology for validating the selection of k given a FS al-
gorithm using the Neyman-Pearson hypothesis test – uniformly the most powerful hypothesis test. There are no
assumptions made about the distribution of the data that the base FS algorithm would not already be making. The
approach is easily integrated with existing FS methods, and can be used as a post-hoc test to determine the selection
of the free parameter k was appropriate. We demonstrated, on synthetic data sets, that NPFS is cable of identify the
correct number of relevant features even when the base-FS method does not select k∗ features for each bootstrap, and
that NPFS works well in practice on UCI data sets.
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